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The spectral element model is known to provide very accurate structural dynamic charac- 

teristics, while reducing the number of degree-of-freedom to resolve the computational and cost 

problems. Thus, the spectral element model for an axially moving Bernoulli-Euler beam 

subjected to axial tension is developed in the present paper. The high accuracy of the spectral 

element model is then verified by comparing its solutions with the conventional finite element 

solutions and exact analytical solutions. The effects of the moving speed and axial tension on 

the vibration characteristics, wave characteristics, and the static and dynamic stabilities of a 

moving beam are investigated. 
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1. Introduct ion  

The moving belts used in power transmission 

are an example of a class of axially moving struc- 

tures. Axially moving speed may significantly 

affects the dynamic characteristics of moving 

structures even at low speed, giving rise to the 

variation of natural frequencies and complex 

modes. Above a certain critical moving speed, 

axially moving structures may experience severe 

vibrations, static instability, or dynamic instabi- 

lity to result in structural failures. Thus, it is im- 

portant to accurately predict the dynamic char- 
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acteristics and instability of such structures in 

advance for the successful analysis and design of 

a broad class of technological devices. The litera- 

ture regarding axially moving structures is quite 

wide, and an extensive literature overview can be 

found in Wickert and Mote (1988). 

The axially moving beam-like one-dimension- 

al structure with flexural rigidity has been tradi- 

tionally represented by the Euler-Bernoulli beam 

(BE-beam) model or Timoshenko beam model. 

The solutions of the equations of motion for the 

moving beam models have been obtained by var- 

ious solution techniques including the Galerkin's 

method (Hwang and Perkins, 1992; AI-Jawi et 

al., 1995 ; Pellicano and Vestroni, 2001), assumed 

mode method (Lee, 1993), finite element method 

(FEM) (Stylianou and Tabarrok, 1994), Green's 

function method (Wickert and Mote, 1990), trans- 

fer function method (Riedel and Tan, 1998), per- 

turbation method (Oz, 2001), and the Laplace 
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transform method (Chonan, 1986). 

In the literature (Doyle, 1997; Lee and Lee, 

1998; Lee et al., 2000, 2001), it has been well reco- 

gnized that the spectral element method (SEM) 

is an exact solution method for the dynamic 

analysis of structures. In SEM, the spectral ele- 

ment matrix (or exact dynamic stillness matrix) is 

formulated in frequency-domain by using exact 

dynamic shape functions. Therefore it does not 

require any structural discretization to improve 

the solution accuracy for a uniform beam, re- 

gardless of its length. As it is one of element 

methods, the conventional finite element assembly 

procedure can be equally applied to formulate 

the global system dynamic equation of a structure. 

In SEM, the dynamic responses in frequency- 

and t ime-domains are computed very efficiently 

by using the fo rward -FFT  (simply, FFT)  and 

inverse F F T  (simply, IFFT)  algorithms. Recent- 

ly, Le-Ngoc and McCallion (1999) derived the 

dynamic stiffness matrix for the axially moving 

string to obtain exact eigenvalues. However, the 

spectral element model in terms of exact dynamic 

stiffness matrix has not been introduced in the 

literature for axially moving beam structures. 

The purposes of the present paper are first to 

formulate the spectral element model |br the 

transverse vibration of an axially moving BE~ 

beam model subjected to an axial tension, and 

then to verify its high accuracy by comparing 

with the solutions by the other solutions methods, 

and finally to investigate the effects of the moving 

speed and axial tension on the vibration and 

stability of the moving beam. 

2. Equation of Motion 

Consider a BE-beam model of flexural rigidity 

EI,  which travels under an applied axial tension 

P with constant transport speed c. The equation 

of motion and relevant boundary conditions can 

be derived form the extended Hamilton's princi- 

ple 

t, ~ ( 3 K - 3  V + ~W) dt=O (1) 

where K and V are the kinetic energy and the 
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potential energies, respectively, and S W  is the 

virtual work. The kinetic and potential energies 

are given by 

1 L 

E=~f ,o  pA{ c2+(u,+cu/)  2 }dx 
(2) 

v = l  foL(Eiw"2+ pw'~) dx 

where w(x, t) is the transverse deflection, L is 

the length of beam and pA is the mass per length 

of beam. In Eq. (2), the dot (-) and prime ( ' )  

denote the derivatives with respective to time 

and spatial coordinate x, respectively. The virtual 

work S W i s  given by 

8W=foL f ( x ,  t) Ox+MI$O~+M2$02 (3) 

+ Q1 $wl + Q2$w2 

where f ( x ,  t) is the external force and (-/]//1, M2), 

(Q1, Q2) and (01, Oz) are the bending moments, 

shear forces, and slopes specified at two boun- 

daries of x = 0  and x = L ,  respectively. The slopes 

01 and 02 are related to the transverse deflection 

a s  

O,(t) = w ' ( 0 ,  t ) ,  0 z ( t ) = u / ( L ,  t) (4) 

introducing Eqs. (2) and (3) into the extended 

Hamilton's principle, Eq. (1), and applying the 

integral by parts yields 

t 2 L 

+ Pw" + f (x, t) )Swdxdt  
(5) 

& 

+ftl'~{ M (x, t) 30 [~ + M~OO~ + M26& } d t = 0  

where Q(x ,  t) and M(x,  t) are the shear force 
and bending moment defined by 

Q(x, t) = - E I w " - p A c ( ~ v + c w ' )  +Pw'  (6) 
M(x,  t ) = - E I w "  

From Eq. (5), the equation of motion for the 

moving BE-beam model can be obtained as 

EIw . . . .  Pw" + pA ( ib + 2 c w ' +  c2w ") 
(7) 

= / ( x ,  t) 

together with the relevant boundary conditions 
given by 
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w(0, l ) = w l  or O(0, t ) = - - O , }  and 

0 (0, t) = (el or M (0, t) =M~ } at x = 0  

w(g ,  l )=we  or Q ( L ,  t ) = Q 2 }  and 

O(L, t) =r or M ( L ,  t) = - M e }  at x = L  

(8) 

wave. The general solution of Eq. (11)(i.e., a 

specific spectral component) is assumed in the 

form 

W(x) =Ce ~x (13) 

3. Spectral Element Formulation 

The spectral element formulation begins with 

the governing equations of motion without ex- 

ternal forces. The free vibration response of the 

moving BE-beam model are then represented in 

the discrete Fourier  transform (DFT) forms as 

(Doyle, 1997 ; Lee et al., 2000) 

N - 1  

w (x, l) = Z Wn (x) e i~~ (9) 
n = 0  

where i = , / - - 1  is the imaginary unit and Wn(x) 
is the spectral components (or Fourier coeffi- 

cients) corresponding to the discrete frequencies 

co,=27rn/T ( n = 0 ,  1, 2, .--, N - I ) .  N denotes 

the number of spectral components (often called 

sampling number) to be taken into account in the 

analysis, and T is the time window related to 

N as (Newland, 1993) 

N =  2fNyQ T (10) 

where fNY0 is the highest frequency in Hz called 

the Nyquist frequency. Note that WN-n= W*, 
where W* is complex conjugate of Wn by the 

definition of DFT. The accuracy of time res- 

ponses may depend on how many spectral com- 

ponents are taken into account in the analysis. 

The summation and subscripts used in Eq. (9) 

are so obvious that they will be omitted in the 

following equations for brevity. 

By substituting Eq. (9) into Eq. (7), with 

f (x, t ) = 0 ,  one may obtain 

W""-(Po-mek~)  W"+2imkgW'-k~W=O (11) 

where Po=P/EI ,  ko is the wave number of the 

stationary beam without axial tension (i.e., c = 0  

and P = 0 ) ,  and m is the dimensionless moving 

speed of beam (i.e., Mach number).  They are 
defined by 

c w f E I  
m =  , k 0 = ~ ,  c~=co (12) 

V Cp cp p A  

where ca is called the phase velocity of bending 

where k is the wave number. Substituting Eq. 

(13) into Eq. ( l l )  gives a dispersion relation as 

k4+ (Po-mZkeo) U - 2 m k 3 k - k 3 = O  14) 

Let's define dimensionless variables as 

k = L k ,  ko=Lk0, ~ m,~o = ~176 " = ~ ~ i  - L c  
15) 

_ L 2 

P=LzP~  E1 P 

By use of the dimensionless variables, Eq. (14) 

can be rewritten is 

k 4 + ( p - c z ) k 2 - 2 c k 2 k - k ~ = O  (16) 

From Eq. (14), tour roots kr ( r = l ,  2, 3, 4) can 

be obtained. Then the general solution of Eq. 

(11) can be expressed as 

4 

W (x) = ~, Cre ~rx (17) 
r = l  

Now, consider a finite beam element of length l 

as shown in Fig. 1. The spectral nodal degrees- 

o~freedom (simply, spectral nodal DOFs) ,  spec- 

tral nodal forces and spectral nodal bending 

moments are listed in Fig. 1. The spectral nodal 

DOFs are defined by 

w l -  w (0), o ,  = w '  (0) 
(18) 

W~= W(l) ,  02= W'(l) 

Substituting Eq. (17) into Eq. (18) gives a rela- 

tion between the spectral nodal DOFs vector 

{ d } and the constants vector { C } as 

{ d }=[ Y(w)  ]{ C } (19) 

o, w, vv2o2 

, tlo2) 
Fig. 1 Sign convention for the spectral BE-beam 

element model 
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where 

{ d } = {  W~ O, W2 O2} ~ 

(c }={c lc~c3c,  V 

i,,, 11 [Y(co)]--  cl c2 c3 c, 
- -  el C2 C3 84 

CI~I C2~'2 C3E'3 C4E4 

with 

(20) 

c~=ikr,  e r = e  ~ '  ( r = l ,  2, 3, 4) (21) 

Assume the shear force Q(x, t) and bending 
moment of M ( x ,  t) can be represented in the 
DFT forms as 

N-1 
O(x, t) = Z O.(x) e '~"' 

n=0 
(22) 

N--1 
M ( x ,  t ) =  ~ M , ( x ) e  ~~ 

n--O 

In the following, the summation and subscripts 
used in Eq. (22) will be omitted for brevity. Ap- 
plying Eq. (9) into Eq. (6) and using Eq. (22) 
may yield the spectral components of Q(x, t) 
and M ( x ,  t) as follows 

O(x) = - E I L W " -  (Po-mZkg) W'+imkgWJ 
(23) 

M (x) = - E I W "  

The spectral nodal shear forces and spectral nodal 
bending moments specified on the finite beam 
element (see Fig. 1) are defined by 

Q ~ = - Q ( 0 ) ,  M , = M  (0) 
(24) 

O2=O( l ) ,  M 2 = - M ( I )  

Substituting Eq. (19) into Eq. (23) and applying 
Eq. (24) gives a relation between the spectral 
nodal forces vector { f } and the constants vector 
{ C )  as 

( f ) = [ x ( c o ) ] (  c } (25) 

where 

{ f } = {  Q, M, Q2 M2} T 

- - g l  g2 --g3 --g4 

IX(co) ] = E I  k~ k~ k~ kZ4 (26) 
e~g~ ezg2 e3g3  e494 

- -  e l k ~  - e z k ~  - e s k ~  - e4k 2 

with 
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g~=i[k~ + (Po-m2kZo) k r - m k ~ ]  
(27) 

( r = l ,  2, 3,4) 

The constants vector { C } can be readily eli- 
minated from Eqs. (19) and (25) to result in the 
spectral nodal forces vector-spectral nodal DOFs 
vector relation in the form 

( f }=Is(co) ~{ d ) (28) 

where Is(co)] is the spectral element matrix, 
which is the frequency-dependent Hermitian 

matrix defined by 

[ s ( co ) ]=[X(co ) ] [Y (co ) ]  -1 (29) 

The spectral element equation, Eq. (28) can be 
rewritten in terms of dimensionless variables as 

{ a~) = [.s ((~)]{ d }  (30) 

where & is the dimensionless circular frequency 
defined by 

dj=coL2./  p A  (31) 
v E i  

and {.f} and { d }  are the dimensionless spectral 
nodal forces vector and spectral nodal DOFs 
vector, respectively, defined by 

{ f } = {  01, M,, O2, M2 )r 
L 2 L 2 L r 

= { E I  Q1, L ~ / M 1 ,  E1 Q2, ~ I  Mz } 
(32) 

{ d } = (  w~, o~, w~, o2V 

The dimensionless spectral element 
I,~(w) ] is defined by 

[s(~,) ] = I X ( a )  ] [ F (~) ] - '  

where 

] 6191 62~z 6393 64~4 
L - 6 d 7 ~  - gz/e~ - 6sk'--~ - g4k~ 

/ 1 1 1 1 1 

- -  e l  62 63 64 
61E'1 62~2 63~3 6494 

matrix 

(33) 

(34) 

with 
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p.,-=i[ ~r + (P--?2) l~,--6CO] 
(35) 

e r  : C i k r t lL ,  ~ r  : ikr 

The spectral element matrices can be assembled 
in a completely analogous way to that used in 
FEM (Doyle, 1997; Lee at al., 2000). Applying 
the boundary conditions after the assembly may 
provide a global system equation in the form as 

IS(co) ] { d g } - - { f g }  (36) 

where IS(co)] is the global spectral matrix (i.e., 
global dynamic stiffness matrix), {dg } is the 
global spectral nodal DOFs vector, and { fg  } is 
the global spectral nodal forces vector. 

To obtain the dynamic responses in time- 
domain, first compute { fg  } from the external 
forces transformed into the frequency-domain by 
using the forward FFT  algorithm. Next solve 
Eq. (36) for { de } and apply the results into 
Eq. (19) to compute the spectral displacement 
components from Eq. (17). Finally, based on 
Eq. (9), the inverse FFT algorithm is used to 
obtain the dynamic responses in the time-domain. 
The natural frequencies (NAT are computed 
from the condition that the determinant of global 
spectral matrix IS(c0)]  becomes zero as follows: 

det [S  (couaz) ] ----0 (37) 

4. Static and Dynamic Instabilities 

An axially moving beam may become unstable 
if its moving speed is over a certain critical speed. 
To investigate the stability of the moving beam 
one usually assumes the free vibration responses 
of the form (Bisplinghoff and Ashley, 1962) 

w(x, t ) = W ( x ) e  ~t or 
~(2, [ )= f f ' (Y ) e  ~' (38) 

where ~, A, and t are the dimensionless spatial 
coordinate, the dimensionless eigenvalue, and the 
dimensionless time, respectively, defined by 

- x - 1 ~ - E l  . , a = ~ A , , _ . -  
(39) 

Applying Eq. (38) into the free vibration equa- 

which the dimensionless (complex) eigenvalues/~ 
can be computed in the form 

/~-----Re (z~) + i lm (z~) (40) 

where Re(A) and lm(/~) denote the real and 
imaginary parts of dimensionless engenvalue 2~, 
respectively. The type of instability can be deter- 
mined from the signs of the real and imaginary 
parts of all dimensionless eigenvalues as follows : 

Stable if Re(/~) --<0 
Unstable: static instability (divergence) 

if Re(/~) > 0  and Ira(/1) = 0  (41) 
Unstable: dynamic instability (flutter) 

if Re(/~) >0  and lm(,~) :4:0 

The eigenvalue problem to investigate the sta- 
bility of the present moving beam problem can 
be readily reduced from Eq. (30) by simply re- 
placing i~  with/~, which can be hinted from Eq. 
(36) as 

[,~(/~) ]{ dg } : {  0 } (42) 

The type of instability, at a specific dimension- 
less moving speed ~ and dimensionless axial ten- 
sion /5, is then determined by investigating the 
dimensionless eigenvalues ,~ numerically solved 
from the characteristic equation 

det [g(/~) ] = 0  (43) 

The dimensionless wavenumbers kr ( r =  1, 2, 3, 
4) required to compute [,~(,~)] in Eq. (42) are 
obtained from Eq. (16), with replacing iw with 

The dimensionless critical speed at which the 
static instability (i.e., divergence speed 6~) occurs 
can be derived in a closed form by considering the 
existence of non-trivial equilibrium position, i.e., 
the static eigenvalue problem (Wickert and Mote, 
1990). The characteristic equation of the static 
eigenvalue problem can be reduced from Eq. (16) 
by putting co=0 (i.e., /~0=0 ) as 

k2[kz+ ( /5_  ~2) ] ~-0 (44) 

Equation (44) gives four roots as 

tion of Eq. (7) yields an eigenvalue problem from k t = k z = 0 ,  k3=--/e4=le*=~/~z----P 

Copyright (C) 2003 NuriMedia Co., Ltd. 
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Thus, the non- t r iv ia l  equi l ibr ium displacements 

of  the moving beam can be expressed in the 

form 

W(f~) =Cl+C2fi , ,+Caeih'x+cae -ih'x (46) 

The coefficients Ci  ( i =  l, 2, 3, 4) are determined 

by the boundary  conditions.  Apply ing  the simply 

supported boundary  condit ions to Eq. (46) gives 

kn--rt,n" ( n = l , )  3, "--) (47) 

where n denotes the vibrat ion mode number. 

Substituting Eq. (46) into the low relation of  Eq. 

(45) gives the dimensionless divergence speed 

cDn, at which the divergence instability o f  the 

n - th  vibrat ion mode occurs, as follows : 

CDn = ~f]e*2 + P (48) 

Equation (48) shows that in theory, the static in- 
stability occurs whenever the dimensionless mov- 

ing speed of  a beam is equal  to the phase speed 

of  the propagat ing bending wave (i.e., c,b//e{'). 

However,  in practice, the critical speed of  a mov- 

ing beam is considered as the dimensionless 

lowest divergence speed got that is equal  to the 

phase speed of  the first propagat ing bending 

wave. 

5. N u m e r i c a l  I l l u s t r a t i o n s  and 

D i s c u s s i o n s  

For  numerical  i l lustrations, a simply supported 

uniform moving beam is considered. Table  I is 

prepared to verify the high accuracy of  the present 

spectral element model  and also to investigate 

the effects of  dimensionless moving  speed c and 

dimensionless axial tension P on the natural 

frequencies. The present spectral element model  is 

evaluated by compar ing  the natural  frequencies 

obtained by SEM with those obtained by the 

analytical  approach (Blevins, 1979) and the con- 

ventional  FEM.  The finite element model  used in 

this study is formulated in the form 

[M]{d}+[c]{d}+[K]{d}={f} (49) 

Table 1 
(Blevins, 
Comparison of the natural frequencies obtained by the present SEM, FEM, and analytical method 

979) 

Dimensionless 
Moving Speed 

0.5(m 

CF1 

Method ArE (NvoF) 
lm (Al) 

Dimensionless Natural Frequen 

lm(~)  

Analytical 1 10.361 247.237 

SEM I (2) 10.361 247.237 

10 (20) 10.361 248.211 

FEM 20 (40) 10.361 247.306 

50 (100) 10.361 247.237 

SEM 1 (2) 8.734 246.389 

8.734 247.400 10 (20) 

FEM 20 (40) 8.734 246.452 

8.734 246.389 50 (ioo) 

Im(,~) Im(As) 

39.974 89.328 

39.974 89.328 

39.974 89.372 

39.974 89.328 

39.974 89.328 

38.855 88.354 

38.862 88.411 

38.855 88.360 

38.855 88.354 

35.337 85.414 SEM I (2) 0.000 243.825 

0.038 244.956 

FEM 

lO (20) 

50 (1oo) 

20 (40) 0.019 243.894 

0.019 243.825 

lO (20) 

SEM I (2) 233.665 

-- 235.274 

20 (40) -- 233.747 

-- 233.665 50 (100/ 

35.349 85.483 

35.337 85.420 

35.337 85.414 

1[.096 73.174 

11.322 73.318 

11.115 73.187 

11.096 73.174 

FEM 

Note : NE=number of finite elements, N~v=number  of degrees-of-freedom 
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where { d } is the nodal displacement DOF vector 

defined by Eq. (19), { f }  is the nodal forces 

vector, [M~ is the mass matrix, [C]  is the skew- 

symmetric gyroscopic matrix, and [K]  is the 

stiffness matrix: the finite element matrices are 

given in Appendix. To formulate the finite ele- 

ment model given by Eq. (49), the displacement 

fields within a finite element of length 1 are 

assumed in the form (Petyt, 1990) 

w(x ,  t ) = [ N ( x ) ~ {  d ( t ) }  (50) 

where [N]  is the shape function matrix given in 

Appendix. 

Because the example beam is uniform, only one 

spectral finite element is used to obtain the SEM 

results in Table 1, while the total number of con- 

ventional finite elements is gradually increased 

to improve the FEM results. Table I shows that 

the SEM results for E = 0  and P = 0  are identical 

to the exact analytical results given by Blevins 

(1979), while the FEM results converge to the 9o 

SEM results (obtained by using one spectral finite 

element) as the total number of conventional 

finite elements used in FEM is increased. This ~ 6o 

implies that, in contrast to the conventional FEM ~' 

model, the present spectral element model pro- 

vides highly accurate results by using only a small 

number of finite elements. This is true especially 

at high frequency modes. 

From Table 1, one may observe that, for a fixed 

dimensionless moving speed, the dimensionless ~ 

natural frequencies are in general increased as the 

dimensionless axial tension is increased. On the 

other hand, for a fixed dimensionless axial ten- ~ ~o; 

sion, all dimensionless natural frequencies are 

decreased as the dimensionless moving speed of 
_E 3O 

beam is increased. One may also observe from 

Table 1 that the fundamental dimensionless natu- 

ral frequency vanishes first when the dimension- o 

less moving speed of beam c is increased to a 

certain critical value (i.e., divergence speed cm) 

at which the static instability (i.e., divergence) 

O c c u r s .  

Figure 2 shows the changes in the dimension- 

less eigenvalues ,~:Re(/])  +i lm( ,~)  with varying 

the dimensionless moving speed of beam c, for 
dimensionless axial tension /5=  1. When the di- 

Copyright (C) 2003 NuriMedia Co., Ltd. 

mensionless moving speed ~ is lower than about 

~0x=3.30 (the first divergence speed), the moving 

beam is stable because all dimensionless eigen- 

values are pure imaginary. However, if the dimen- 

sionless moving speed is between cm and {s = 

6.36, there exist pure positive real eigenvalues 

(i.e., Re(A)>0,  i l m ( A ) = 0 ) ,  which implies the 

occurrence of the static instability (i.e., diver- 

gence). Figure 2 shows that there exist the second 

stable region between Cs and CF~=6.44, in which 

all eigenvalues are pure imaginary. If the dimen- 

sionless moving speed of beam becomes larger 

than cv~ , then there exist complex eigenvalues 

with positive real parts Re(/1), which implies the 

occurrence of dynamic instability (i.e., flutter). 

Thus CF~=6.44 is the lowest flutter speed of the 

example beam. In Fig. 2, ~oz=9.48 is the second 

divergence speed and CF2=10.30 is the second 

flutter speed. 

J �9 ~ o~vergence~ "1------ Flultef ~ 4j--Mtxed ; : . 

In~labll~ly Flutle 1 

c o c s C,~ Coz r 3rd mode 

% '  ...... lJ,  j-  I 1 sl mode / ~ / ~  / 

�9 1 6 8 10 12 1,4 
Dimensionless Moving Speed [C] 

Fig. 2 

~ 3 r o  mode 

.\ 
~ 2rid rhode \~_3rd mode / 

Oimens~onle~ Moving Speed I t ]  

The dimensionless eigenvalues ~ = R e ( ~ ) +  
ilm(~) vs. the moving speed of beam c, 
where cn~ is the lowest divergence speed, Cs is 
the moving speed at which the second stable 
region appears, cr~ is the lowest flutter speed, 
cD2 is the second divergence speed, and crz is 
the second flutter speed 
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Figure 3 shows the dimensionless time res- 

ponses of the moving beam at various dimension- 

less moving speeds, when t5--1. The time res- 

ponses are reconstructed from the spectral com- 

ponents of response by using the inverse FFT,  

represented by Eq. (9). The sampling number N 

used for the responses in Fig. 3 is 1024, which 

is chosen so as to obtain satisfactory converged 

results. As shown in Fig. 3 (a), the moving beam 

is stable when it moves at c =  1, which is lower 

than the first divergence speed cm--3.30. How- 

ever, Fig. 3(b) shows that the moving beam 

indeed becomes unstable by divergence when it 

moves at slightly higher speed than the divergence 

speed cm. As can be expected from Fig. 2, the 

moving beam becomes stable again when it moves 

at E=6.40, which is located within the second 

stable zone of Fig. 2. Fig. 3(d) shows that the 

moving beam becomes unstable by flutter when it 

moves at gF~=6.44, which is the lowest flutter 

speed. 

Figure 4 shows the changes in three critical 

dimensionless moving speeds of beam, cot (the 

lowest dimensionless divergence speed), Cs, and 

gv, (the lowest dimensionless flutter speed) with 

varying the dimensionless axial tension P. The 

region below the curve cm and the narrow region 

between two curves Cs and s are the first 

stable region and the second stable region, re- 

spectively. The region between two curves CDa 

and ('s indicates the first divergence instability 

region, while the region just above the curve 

gr~ indicates the flutter instability region. It is 

apparent from Fig. 4 that the three critical di- 

mensionless moving speeds are monotonically 

increased as the dimensionless axial tension is 
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Fig. 4 The dimensionless critical moving speeds vs. 

the dimensionless axial tension, where cm is 

the first divergence speed, cs is the moving 

speed at which the second stable region 

appears, and dy~ is the first flutter speed 

increased. 

Figure  5 shows the changes in the dispersion 

curves o f  the moving  B E - b e a m  model  with vary- 

ing its dimensionless moving  speed. The lowest 

two dimensionless natural  frequencies are indi- 

cated in Fig. 5 by the circle (O) and the tr iangle 

(A),  in order to show they all move to leftward 

as the moving  speed of  beam is increased. As 

shown in Fig. 5 (e), the fundamental  dimension-  

less natural  frequency c#~ vanishes first when the 

dimensionless moving  speed reaches at c m = 3 . 3 0  

and then it disappears forever as the dimension-  

less moving speed is increased over cm. When the 

beam is in the stationary state (i.e., ~ = 0 ) ,  the 

dimensionless wavenumber  /~ is pure imaginary. 

Thus, there exists evanescent wave within the 

beam as shown in Fig. 5(a) .  However ,  when the 

beam is moving,  dimensionless wavenumber  /e~ 
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becomes complex as shown in Fig. 5 (b). As the 

moving speed of beam is increased up to cc = 1, 

all dimensionless wavenumers at the dimension- 

less zero frequency merge to zero (see Fig. 5 (c)). 

if the moving speed of beam is kept increasing 

over Cc, the dimensionless wavenumber ]~2 be- 

comes pure real at 0--<~<--COc, while it is com- 

plex at ~ c > ~ .  This implies that, when the dimen- 

sionless moving speed is lager than Cc, the origi- 

nal evanescent wave becomes a traveling wave 

within a narrow low frequency band given by 

0--<w<--Cbc. Thus the dimensionless frequency COc 

is the dimensionless cut-off frequency. The di- 

mensionless cut off frequency cbc and the dimen- 

sionless critical moving speed cc above that the 

dimensionless cut-off frequency may exist can be 

derived from Eq. (16) as follows: 

1 
& c = - - ~ -  2 ( f~+, / /~--64f2) ,  C'c= , /P  (5l) 

where 

A = 8  (~2- - /5  ) -- 36 ( g 2 - - p )  ,52+27g 4 

A = - - p ( a ~ - - p )  ~ 
( 5 2 )  

Figure 6 compares the natural modes of the 

dimensionless moving beam for various dimen- 

sionless moving speeds. It shows that the sym- 

metric or anti-symmetric natural modes of the 

stationary beam are all distorted due to the effects 

of moving speed and their original symmetry or 

anti-symmetry cannot be reserved for the moving 

beam. In Table 1, it is shown that the fundament- 

al natural frequency of bending mode vanishes 

when the moving speed of beam reaches at the 

divergence speed g'ol. Accordingly, one may ob- 

serve from Fig. 6(a) that the first bending mode 

indeed disappears when the beam is traveling at 

the dimensionless moving speed of cm. 
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Fig. 6 Moving speed dependence of the natural modes of a moving BE-beam model when the dimensionless 
axial tension is i D=I 
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6. Conclusions 

In this paper, the dynamic equations of motion 

for the moving BE-beam model subjected to an 

axial tension are derived and then the spectral 

element model is formulated by using the exact 

dynamic shape functions. The high accuracy of 

the spectral element is then verified by comparing 

its solutions with the exact analytical solutions 

and conventional FEM solutions. The critical 

moving speed at which the divergence instability 

occurs is analytically derived in a closed fbrm. 

Through some numerical studies, the followings 

are investigated. 

(1) When the moving speed reaches the lowest 

divergence speed, the first natural frequency 

vanishes and the first bending mode disappears, 

resulting in the divergence. 

(2) The divergence and flutter speeds tend to 

increase as the axial tension is increased, and 

there may exist a very narrow stable region be- 

tween the first divergence zone and the first flutter 

zone. 

(3) When the beam moves at a speed larger 

than , / P / o A ,  there appears a cut-off frequency 

below which the original evanescent wave be- 

comes a propagating wave. 

References  

AI-Jawi, A. A. N., Pierre, C. and Ulsoy, A. G., 

1995, "Vibration Localization in Dual-Span Ax- 

ially Moving Beams, Part I:  Formulation and 

Results," Journal o f  Sound and Vibration, Vol. 

179, No. 2, pp. 243--266. 

Bisplinghoff, R. L. and Ashley, H., 1962, Prhl- 

ciples o f  Aeroelasticity, Dover Publication, New 

York. 

Blevins. R.D., 1979, Formulas ,for Natural 

Frequenc.v and Mode Shape, Van Nostrand Rein- 

hold Company, New York. 

Chonan. S., 1986, "Steady State Response of 

An Axially Moving Strip Subjected to A Station- 

ary Lateral Load," Journal o f  Sound and Vibra- 

tion, Vol. 107, No. 1, pp. 155--165. 

Doyle, J. F., 1997, Wave Propagation in Struc- 

tures ." Spectral Analysis Using Fast Discrete 

Fourier Transforms, Springer-Verlag, New York. 

Hwang, S. J. and Perkins, N. C., 1992, "Super- 

critical Stability of An Axially Moving Beam," 

Journal o f  Sound and Vibration, Vol. 154, No. 3, 

pp. 381--409. 

Lee, H. P., 1993, "Dynamics of A Beam Mov- 

ing Over Multiple Supports," International Jour- 

nal o f  Solids and Structures, Vol. 30, No. 2, 

pp. 199-- 209. 

Lee, U. and Lee, J., 1998, "Vibration Analysis 

of the Plates Subject to Distributed Dynamic 

Loads by Using Spectral Element Method," 

K S M E  International Journal, Vol. 12, No. 4, 

pp. 5 6 5 -  571. 

Lee, U., Kim, J. and Leung, A .Y .T . ,  2000, 

"The Spectral Element Method in Structural 

Dynamics," The Shock and Vibration Digest, 

Vol. 32, No. 6, pp. 451--465. 

Lee, U., Kim, J. and Leung, A. Y.T., 2001, 

"Vibration Analysis of the Active Multi-Layer 

Beams by Using Spectrally Formulated Exact 

Natural Modes," K S M E  International Journal, 

Vol. 15, No. 2, pp. 199--209. 

Le-Ngoc, L. and McCallion, H., 1999, "Dy- 

namic Stiffness of An Axially Moving String," 

Journal o f  Sound and Vibration, Vol. 220, No. 4, 

pp. 749--756. 

Newland, D.E., 1993, Random Vibrations, 

Spectral and Wavelet Analysis, 3rd ed., Long- 

man, New York. 

Oz, H.R., 2001, ~'On the Vibrations of An 

Axially Traveling Beam on Fixed Supports with 

Variable Velocity," Journal o f  Sound and Vibra- 

tion, Vol. 239, No. 3, pp. 556--564. 

Pellicano, F. and Vestroni, F., 2001, "Non-  

linear Dynamics and Bifurcations of An Axially 

Moving Beam," Journal o f  Vibration and Acous- 

tics, Vol. 22, pp. 21 --30. 

Petyt, M., 1990, Introduction to Finite Element 

Vibration Analysis, Cambridge University Press, 

New York. 

Riedel, C. H. and Tan, C. A., 1998, "Dynamic 

Characteristics and Mode Localization of Elas- 

tically Constrained Axially Moving Strings and 

Beams," Journal o f  Sound and Vibration, Vol. 

215, No. 3, pp. 455--473. 

Copyright (C) 2003 NuriMedia Co., Ltd. 



406 Hyungmi Oh, Usik Lee and Dong-Hyun Park 

Stylianou, M. and Tabarrok, B., 1994, "Finite 
Element Analysis of An Axially Moving Beam, 
Part I : Time Integration," Journal o f  Sound and 
Vibration, Vol. 178, No. 4, pp. 433--453. 

Wickert, J. A. and Mote, C. D., 1988, "Current 
Research on the Vibration and Stability of Ax- 
ially Moving Materials," Shock and Vibration 
Digest, Vol. 20, pp. 3-- 13. 

Wickert, J .A.  and Mote, C.D. ,  1990, "Clas- 
sical Vibration Analysis of Axially Moving Con- 
tinua," Journal o f  Applied Mechanics, Vol. 57, 
pp. 738-- 744. 

Appendix 

_ p A l  

156 221 54 --131] 
22l 4l  2 13l --312 / 

54 131 156 - -22l  / 
- -13l  - -3 l  z - -22l  4l  2 ] 

360+36r-36s symmetric 
.,~ El l180I+3rl-3sI 120{Z+4rlZ-4sl 2 

[AJ= 30 [-360-36r+36s-1801-3rl+3sl 360+36r-36s 
[ 180I+3rl-3sl 601 z-rI2+sl 2 -1801-3rl+3sl 120IZ+4rlZ-4sl ' 

fo 6, 6d ] - 6 l -  
A - I  2 r , ~ = p c - 6 l  0 6l 

k ~ J  - -  --30 - -6 l  0 
6l l 2 --61 

The shape function matrix in Eq. (50) and the 
finite element matrices in Eq. (49) are given by 

[ N ( x ) ] = [ I - - 3 ~ 2 + 2 ~  3, ~'(~e--l)21, 
3~2--2~ e3, ~e(Sz--~e)21 ] 

where 

( Xl ) P P  p A c 2 l  2 
~e=2 --1 (O<x<--l), r = ~ - ,  s =  E 1  
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